

Lo spread tra mito e realtà

Giovanni Scarano - 19/08/2025 [papers]

Abstract

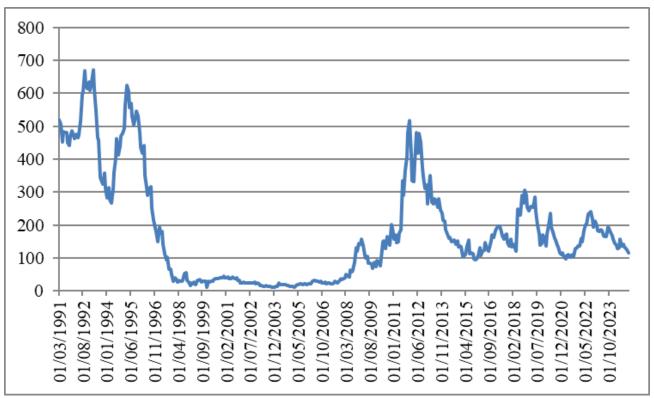
Durante la crisi dei debiti sovrani dell'eurozona, nel 2011, la nozione di spread, inteso come differenza tra il rendimento dei BTP decennali italiani e i Bund tedeschi con analoga scadenza, divenne elemento centrale di attenzione della stampa economica e del dibattito politico nazionale, sollecitando coloro che auspicavano un vincolo esterno per la finanza pubblica italiana a stigmatizzarlo come dimostrazione palese di una percezione di insostenibilità del debito pubblico nazionale da parte dei cosiddetti 'mercati'.

Introduzione

Durante la crisi dei debiti sovrani dell'eurozona, nel 2011, la nozione di *spread*, inteso come differenza tra il rendimento dei BTP decennali italiani e i Bund tedeschi con analoga scadenza, divenne elemento centrale di attenzione della stampa economica e del dibattito politico nazionale, sollecitando coloro che auspicavano un vincolo esterno per la finanza pubblica italiana a stigmatizzarlo come dimostrazione palese di una percezione di insostenibilità del debito pubblico nazionale da parte dei cosiddetti 'mercati'.

In quel contesto politico e mediatico, infatti, l'interpretazione economica dominante dello spread fu quella di un premio per il rischio di default degli emittenti sovrani. Questa interpretazione fu incoraggiata da un'evidente correlazione statistica tra spread e prezzi dei Credit Default Swaps (CDS), che sono contratti bilaterali tra compratori e venditori teoricamente finalizzati a fornire copertura per il rischio di default dell'emittente di un titolo (Di Cesare & Guazzarotti 2010; Carboni 2011; Bianchi 2012; Calice et al. 2015; Hassan et al. 2015; Ismailescu & Phillips 2015). Uno swap, infatti, trasferisce l'esposizione creditizia dei prodotti a debito fisso tra le due parti in causa. Se i CDS sono visti come puri strumenti assicurativi, è dunque logico ritenere che tanto maggiore sia il costo sostenuto per assicurarsi contro un possibile evento creditizio negativo, tanto più elevata debba essere l'aspettativa che tale evento possa verificarsi. Nel caso specifico, il prezzo dei CDS può quindi essere interpretato come una *proxy* dell'aspettativa che un debitore sovrano possa non essere in grado di onorare, a scadenza, gli impegni di pagamento assunti.

Ma i CDS possono configurarsi anche come pure *scommesse* in giochi d'azzardo, senza alcuna finalità di copertura (Duffie 2010; Ismailescu & Phillips 2015; Kiesel et al. 2015; Silva et al. 2016). E ciò fu particolarmente vero nel contesto della crisi dei debiti sovrani dell'eurozona, dove si poteva credibilmente scommettere sul fallimento dell'euro e sul ritorno a monete e politiche monetarie nazionali. Il cosiddetto *rischio di default* di un paese sovrano, che spiegherebbe lo spread, non fa infatti riferimento solo alle possibilità remote di un *ripudio* o di una *rinegoziazione* del debito, ma include la possibilità di politiche inflazionistiche e valutarie impreviste che possano erodere il potere d'acquisto della valuta nella quale il debito è denominato. La variabilità delle aspettative sull'inflazione e sugli andamenti dei tassi di cambio, infatti, non rientra nel premio per l'inflazione attesa, ma si trasforma in una componente del rischio di credito che va teoricamente a determinare il premio richiesto per il rischio.


Di fatto, l'impennata subita dallo *spread* nel 2011 lo riportò di fatto solo in prossimità dei livelli che mostrava nei primi anni '90, quando l'Italia era stata costretta a uscire dallo SME e a lasciar deprezzare la lira (vedi Fig. 1). Ciò è un'ulteriore conferma che gli operatori finanziari nel 2011 temevano il, o scommettevano sul, fallimento dell'euro e il ritorno dell'Italia alle politiche monetarie e valutarie prevalenti prima dell'adesione alla moneta unica.

Secondo le valutazioni della Banca d'Italia, inoltre, nei primi mesi del 2012 lo spread tra BTP e Bund prima risentì in modo

favorevole della conclusione del cosiddetto *Private Sector Involvement* per la Grecia, volto a risolvere i problemi di bilancio di questo paese, poi risentì in modo negativo della dinamica dei conti pubblici in Spagna, della debolezza congiunturale complessiva dell'eurozona e dei risultati elettorali in Grecia (Banca d'Italia 2013). Anche queste interpretazioni degli andamenti dello *spread* sembrano suggerire che la sua dinamica nel corso della crisi dei debiti sovrani fu guidata prevalentemente da aspettative relative al fallimento dell'euro e al ritorno a monete e politiche monetarie nazionali, con i connessi rischi inflazionistici e valutari. Il prezzo dei CDS e lo spread, quindi, anche se possono essere legittimamente considerati dati rivelatori di aspettative da parte degli operatori finanziari, non erano in quegli anni tanto indicatori di rischio d'insolvenza dell'emittente sovrano, meccanicamente collegabile a parametri oggettivi, quali il rapporto debito/Pil, quanto piuttosto il risultato di valutazioni di carattere politico sulla tenuta dell'euro e sul permanere dell'adesione ad esso da parte dei diversi paesi dell'eurozona. Analogo discorso può farsi per la nuova impennata dei prezzi dei CDS e dello spread per l'Italia nel 2018, a seguito dell'insediamento al governo di una maggioranza politica tradizionalmente euroscettica, o a seguito dell'emersione delle tensioni inflazionistiche post-Covid nel 2022 (vedi Fig. 1).

Fig. 1 – Andamento dei valori dello spread tra BTP e Bund decennali (1991-2024)

Fonte: ns elaborazione su dati Datastream

Inoltre, la rapida attenuazione delle tensioni sugli spread nell'eurozona a seguito dell'annuncio, nel luglio del 2012, del famoso 'whatever it takes' da parte del Presidente della BCE conferma il ruolo giocato in quella crisi da componenti puramente speculative. L'intervento discrezionale che la BCE prospettava non era infatti certamente una garanzia offerta a fronte della possibilità d'insolvenza da parte degli Stati sovrani al momento della scadenza dei titoli, quanto piuttosto una minaccia di contrasto attivo alla variabilità dei prezzi dei titoli di Stato prodotta da possibili attacchi speculativi.

Oggi l'attenzione politica e mediatica per lo spread tra BTP e Bund si è drasticamente ridotta, in gran parte perché questo è sceso sotto i 100 punti base. Ma ciò è avvenuto nonostante il fatto che il debito italiano sia ulteriormente cresciuto, sia in termini assoluti, sia in rapporto al Pil, e a fronte del fatto che le principali agenzie internazionali di rating continuino ad assegnare all'Italia un rating BBB, che costituisce di fatto la soglia al di sotto della quale molti investitori istituzionali sarebbero costretti, sulla base dei propri statuti, a dismettere il titolo dal proprio portafoglio. E tutto ciò appare in evidente contrasto con la

spiegazione economica prevalente del fenomeno che si è tradizionalmente data.

L'evidenza empirica degli ultimi anni induce quindi legittimamente a porsi interrogativi teorici circa quello che è stato il consensus sulle determinanti degli spread tra titoli del debito pubblico nell'ambito dell'Eurozona. Il presente articolo, senza alcuna pretesa di fornire una risposta definitiva, vuole porre in evidenza alcuni dei punti deboli dell'interpretazione prevalente e individuare possibili domande di ricerca volte ad approfondire ulteriormente la dinamica del fenomeno.

I fondamenti teorici dell'interpretazione dominante dello spread

L'interpretazione corrente delle determinanti dello *spread* tra BTP e Bund decennali ha di fatto come suo fondamento teorico la forma additiva della *struttura a termine dei tassi di interesse*, originariamente formulata da Fisher e ripresa da Hicks e Lutz (Wood 1964), che individua il *tasso di rendimento richiesto* dagli investitori finanziari per un titolo finanziario come risultato della somma del *tasso ufficiale di sconto*, controllato dalle Banche Centrali, e di una serie di *premi* per l'inflazione attesa, per la liquidità e per il rischio (Nelson 1970; Cox et al. 1985; Jarrow 2009). Tale struttura additiva, però, presuppone tacitamente un'ipotesi di equilibrio di concorrenza perfetta sui mercati mobiliari (Vasicek 1977), ovvero l'assenza di poteri di mercato da parte degli operatori finanziari, che potrebbero determinare *mark-up* aggiuntivi o rendere possibili strategie di attacco speculativo.

Inoltre, la forma additiva della struttura a termine dei tassi d'interesse presuppone tacitamente anche una sostanziale omogeneità dei diversi segmenti del mercato mobiliare, prodotta dall'arbitraggio (Richard 1978). Ma nella realtà i titoli negoziati nei diversi segmenti del mercato mobiliare non sono perfetti sostituti e presentano caratteristiche finanziare diverse che possono indurre dinamiche differenziate nel gioco della loro domanda e offerta giornaliera, con effetti significativi sulla volatilità dei loro prezzi e rendimenti.

Di fatto, il differenziale di rendimento di titoli obbligazionari a cedola fissa, quali i BTP italiani e i Bund tedeschi, è il risultato dei differenziali nei loro prezzi di mercato. Spiegare lo *spread*, quindi, implica spiegare la formazione dei prezzi di mercato di questi titoli.

Nella spiegazione *mainstream* del *pricing* dei titoli finanziari, i prezzi dei titoli sono considerati il risultato dell'interazione tra domanda e offerta che, sotto l'ipotesi di concorrenza perfetta, risultano esclusivamente determinate dalle scelte di portafoglio dei diversi investitori finanziari. In questa prospettiva di equilibrio, i prezzi dipendono dai *tassi di rendimento richiesti*, formati a loro volta secondo la struttura additiva di cui si è detto. Secondo tale spiegazione, quindi, qualora aumentasse la percezione del rischio collegato a un titolo, l'offerta di titoli da parte degli investitori che non troverebbero più conveniente detenerlo eccederebbe la domanda degli operatori che desiderano entrarne in possesso e ciò si convertirebbe in un una riduzione del prezzo fino a che non si determini un rendimento sufficiente a compensare il maggior rischio.

Ma se la struttura concorrenziale reale del mercato dei titoli non approssimasse adeguatamente una situazione di concorrenza perfetta, allora si potrebbe capovolgere il nesso causale e dire che ciò che, o chi, fa il prezzo determina il rendimento effettivo del titolo che gli operatori finanziari andranno a detenere.

Inoltre, nell'interpretazione corrente delle determinanti dello *spread* si fa anche del tutto astrazione dalle caratteristiche specifiche del prodotto finanziario utilizzato per la sua misurazione e dal ruolo che esso gioca nelle strategie di gestione dei portafogli dei diversi tipi di operatori finanziari. Tali caratteristiche, però, possono contribuire alla variabilità di domanda e offerta e, conseguentemente, alla volatilità del prezzo sul mercato secondario. In tal caso, anche facendo astrazione dal ruolo giocato da possibili poteri di mercato, la spiegazione dello spread sulla base della tradizionale struttura additiva dei tassi di rendimento per scadenza dovrebbe comunque verificare se esso è determinato esclusivamente da premi per il rischio o anche da premi di liquidità, connessi alla volatilità dei prezzi sul mercato secondario. Un'eccessiva volatilità dei prezzi, infatti, può ridurre la

percezione di effettiva liquidità di un titolo, inducendo gli operatori a richiedere un premio di liquidità adeguato a detenerlo nel proprio portafoglio.

Un'analisi critica della spiegazione teorica dello *spread* richiede quindi sia un'analisi della struttura concorrenziale effettiva del mercato dei BTP decennali, sia una disamina delle caratteristiche di questo titolo finanziario e delle dinamiche della sua domanda e offerta.

La struttura concorrenziale del mercato dei BTP

Per convenzione, lo *spread* è misurato sul mercato secondario all'ingrosso (MTS) dei BTP con scadenza decennale. La stampa finanziaria fa anche spesso riferimento allo *spread* misurato, in tempo reale, sulle principali piattaforme di *trading elettronico*, che sono però mercati secondari al dettaglio, con caratteristiche dei flussi di compravendita del tutto diverse e una maggiore volatilità dei prezzi. Non a caso, lo *spread* misurato su queste piattaforme risulta essere generalmente più elevato. Nell'interpretazione corrente dello *spread*, però, si fa astrazione dalle caratteristiche specifiche dei diversi mercati mobiliari su cui viene misurato, sulla base dell'assunzione teorica che l'arbitraggio determini prima o poi un loro sostanziale allineamento (Richard 1978).

Gli operatori autorizzati ad accedere alla piattaforma MTS, oltre alla Banca d'Italia e al MEF, che ne fanno parte di diritto, sono passati da circa 200 nei primi anni '90 (Ciocca 2005) a più di 500 [1], grazie alla crescente internazionalizzazione del mercato. Tali operatori sono intermediari finanziari specializzati nella negoziazione all'ingrosso di titoli obbligazionari, banche, società di gestione del risparmio (SGR) e imprese di assicurazione, nazionali ed esteri, che devono avere un patrimonio netto pari almeno a 10 milioni di euro e devono aver stipulato nell'anno solare precedente contratti di compravendita di titoli di Stato pari ad almeno un milione di euro. I lotti minimi negoziabili sull'MTS devono inoltre essere di importo pari a 2 milioni di euro (Ferrari & Ruozi 2021; Costi 2024).

Ma tra gli operatori ammessi sono solo poche decine gli 'operatori principali' (*primary dealers*), costituiti prevalentemente da grandi gruppi bancari e SIM europei, che hanno il ruolo di *market makers* [2], essendo gli unici autorizzati per regolamento a immettere proposte di negoziazione sulla piattaforma telematica, fissando i prezzi di acquisto e vendita, dal differenziale dei quali traggono i propri ricavi di intermediazione. I restanti operatori sono, per regolamento, *price takers*, che possono solo accettare proposte di negoziazione effettuate dai *market makers*. La struttura concorrenziale dell'MTS è quindi, per regolamento, quella di un mercato oligopolistico caratterizzato da una suddivisione degli agenti tra un numero limitato di *price leaders* e la massa di *price followers*, nel quale sembra poco plausibile che la formazione dei prezzi possa essere spiegata sulla base delle ipotesi di concorrenza perfetta.

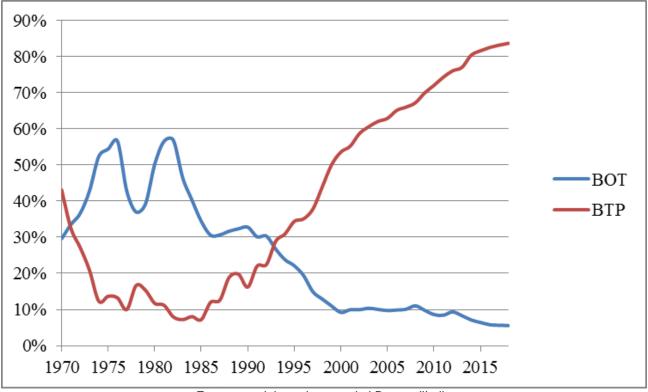
Tra gli *operatori principali* prevalgono poi di fatto, per volumi trattati, una ventina di *Specialisti in Titoli di Stato*, selezionati dal MEF sulla base di requisiti relativi al patrimonio netto di vigilanza, al possesso di una struttura organizzativa idonea, all'aggiudicazione nel mercato primario di una quota di almeno il 3% su base annua dei titoli di Stato emessi e allo svolgimento di un'attività nei mercati secondari coerente con gli obiettivi di gestione del debito pubblico. Per questi operatori sono anche previsti *obblighi di sottoscrizione* nelle aste del mercato primario e di negoziazione di volumi prefissati sul mercato secondario, a fronte dei quali, però, essi godono di alcuni privilegi, tra i quali la facoltà di partecipare in maniera esclusiva ai collocamenti supplementari delle aste di emissione [3]. Questi *Specialisti* sono costituiti dai grandi gruppi bancari nazionali ed europei e dalle controllate europee di giganti della finanza mondiale, quali J.P. Morgan, Morgan Stanley, Goldman Sachs e Citybank (vedi Tab. 1).

Tab. 1 – Lista degli Specialisti in Titoli di Stato (maggio 2025)

Banca Monte dei Paschi di Siena S.p.A.
Banco Bilbao Vizcaya Argentaria SA
Banco BPM S.p.A.
Banco Santander SA
Barclays Bank Ireland PLC
BNP Paribas
BofA Securities Europe S.A.
Citibank Europe Plc
Crédit Agricole Corp. Inv. Bank
Deutsche Bank A.G.
Goldman Sachs Bank Europe SE
HSBC Continental Europe
Intesa Sanpaolo S.p.A.
J.P. Morgan SE
Mediobanca Banca di Credito Finanziario S.p.A.
Morgan Stanley Europe SE
Natixis SA
NatWest Markets N.V.
Nomura Financial Products Europe GmbH
Société Générale Inv. Banking
UBS Europe SE
UniCredit S.p.A.
Fonts, MFF

Fonte: MEF

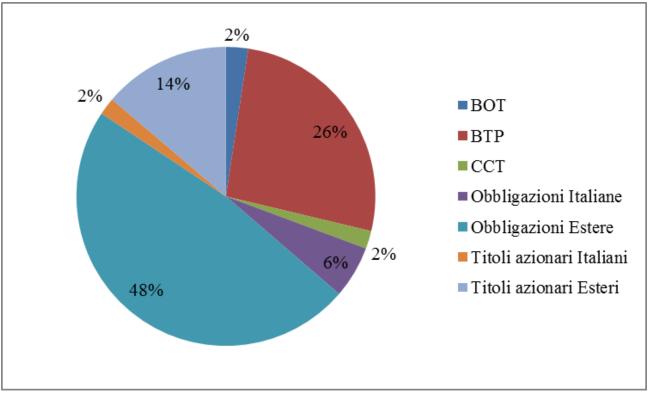
La determinazione del prezzo dei BTP decennali sull'MTS, quindi, più che essere l'effetto dell'interazione tra domanda e offerta su un mercato competitivo, come presupposto dalla *teoria della struttura a termine dei tassi di interesse*, è più probabilmente il risultato di un *gioco negoziale* tra Banca d'Italia e MEF, da un lato, e grandi gruppi bancari, dall'altro. In questo gioco negoziale, i grandi gruppi bancari italiani si trovano di fronte a un *trade-off* tra poter lucrare maggiori rendimenti sui titoli di Stato acquisibili e subire una penalità nell'emissione dei propri titoli obbligazionari. Lo spread relativo ai BTP decennali, infatti, va a costituire, per convenzione e prassi, la componente dello spread relativa al cosiddetto 'rischio paese' nella valutazione del tasso di rendimento richiesto per i loro titoli obbligazionari. Ciò, nel contesto di un *gioco negoziale* (Brian 1990), può creare ovviamente incentivi per strategie cooperative tra grandi gruppi bancari nazionali, Banca d'Italia e MEF, contro i grandi gruppi bancari esteri, che non hanno remore nei confronti dello *spread*.


Le caratteristiche dei BTP come prodotto finanziario

I BTP sono titoli obbligazionari pluriennali a cedola fissa, definita in valore annuale ma liquidata con cadenza semestrale. La scadenza dei BTP decennali dovrebbe teoricamente renderli prodotti finanziari adatti a portafogli di medio-lungo termine, funzionali a strategie d'investimento *buy and hold* con finalità previdenziali o di gestione comune del risparmio, proprie dei fondi pensione e dei fondi comuni di investimento. Non a caso, il ricorso a un'emissione crescente di questi titoli da parte del MEF, fino a coprire il 90% del debito pubblico complessivo italiano, è stato il risultato, a partire dai primi anni '90 del secolo scorso, di strategie volte a intercettare, nel contesto della globalizzazione finanziaria, la domanda mondiale di titoli da parte degli

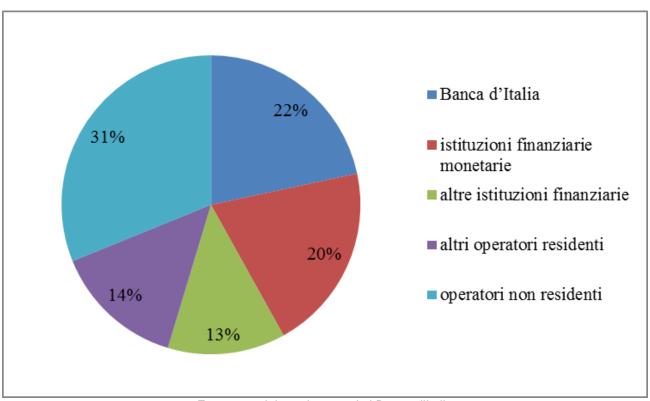
investitori istituzionali (vedi Fig. 1). Prima di allora, nella fase di crescita esponenziale del debito pubblico italiano, il ruolo principale era stato giocato dai BOT, che erano uno strumento particolarmente apprezzato da famiglie e imprese italiane quando il mercato finanziario era di natura prevalentemente nazionale.

Fig. 1 - Andamento della composizione percentuale del debito pubblico italiano (1970-2018)


Fonte: ns. elaborazione su dati Banca d'Italia

I BTP decennali sono però di fatto prodotti apprezzati da tutti gli intermediari finanziari soprattutto per la loro liquidità, determinata dall'esistenza di un attivo mercato secondario, caratterizzato da un notevole interscambio giornaliero. I *fondi comuni aperti*, ad esempio, si trovano ad avere la necessità di liquidare in qualsiasi momento quote del fondo per fronteggiare le richieste di riscatto da parte dei possessori. Anche i *fondi pensione* hanno la necessità continua di liquidare parte del fondo, in misura crescente con il procedere del loro ciclo di vita, al fine di erogare le proprie prestazioni previdenziali.

Ma la liquidità dei BTP li rende titoli ambiti anche per i portafogli delle banche, che devono soddisfare i requisiti di garanzia patrimoniale previsti dagli *accordi di Basilea* e nello stesso tempo avere a disposizione titoli liquidi per regolare gli squilibri giornalieri tra i loro flussi finanziari in ingresso e in uscita. I BTP, a fine 2024, costituivano di fatto il 26% del patrimonio mobiliare delle banche italiane (vedi Fig. 2), che detengono il 20% del debito pubblico italiano (vedi Fig. 3), costituito per quasi il 90% proprio da BTP.


Fig. 2 - Composizione del patrimonio mobiliare delle banche italiane (2024)

Fonte: ns. elaborazione su dati Banca d'Italia

Fig. 3 – Quote di detenzione del debito pubblico italiano (2024)

Fonte: ns. elaborazione su dati Banca d'Italia

È noto che i prezzi dei titoli obbligazionari a cedola fissa con scadenza superiore a 3 anni sono molto sensibili non solo alle variazioni del tasso di sconto, ma anche alle aspettative inflazionistiche e a quelle relative ai tassi di cambio, con una volatilità tanto più elevata quanto più ampia è la variabilità di queste aspettative (Liu & Morley 2012). Poiché queste ultime sono

distribuite in modo non omogeneo tra gli operatori, l'elevata volatilità dei prezzi genera anche condizioni favorevoli per la speculazione, che rende il mercato di questi titoli uno dei luoghi preferenziali per gli operatori di *trading* (Abell 2003).

Se una massa consistente di queste operazioni è poi regolata da algoritmi automatici, fondati sull'analisi tecnica, ciò tende a incrementare ulteriormente la volatilità dei prezzi di mercato dei titoli, generando 'effetti gregge', che creano a loro volta le condizioni ideali per attacchi speculativi da parte di operatori dotati di capacità finanziaria adeguata a innescare movimenti iniziali del prezzo nella direzione desiderata.

Nell'innesco dell'impennata dello spread tra BTP e BUND nel corso del 2011, ad esempio, vi è il fondato dubbio che abbiano giocato un ruolo fondamentale le vendite massicce di BTP decennali effettuate da *Deutsche Bank*, che liquidò, nel corso dei primi 6 mesi dell'anno, più di 7 degli 8 miliardi di euro che deteneva in questi titoli. Le vendite erano ufficialmente motivate da una ristrutturazione di portafoglio, resasi necessaria dopo l'acquisizione di *Postbank*, che deteneva in precedenza nel proprio portafoglio ben 5 miliardi di euro in BTP. La massiccia e rapida liquidazione fu però probabilmente interpretata dagli altri operatori finanziari, nel contesto della "crisi dell'euro" seguita alla crisi finanziaria greca e di una crescente preoccupazione per un ritorno a monete nazionali, come un segnale di sfiducia nei confronti del debito pubblico italiano da parte di uno dei principali attori finanziari dell'eurozona. Ciò indusse, nei mesi successivi, ulteriori massicce vendite da parte di altri operatori finanziari, fino a determinare uno spread di 576 punti base all'inizio del mese di novembre. *Deutsche Bank*, nel frattempo, aveva però riacquistato, nel mese di luglio, BTP per un valore di 2 miliardi di euro, riportando la consistenza in BTP del suo portafoglio allo stesso livello che aveva prima dell'acquisizione di *Postbank*. L'operazione di riacquisto di titoli, dopo aver contribuito, con massicce vendite, a far diminuire il loro prezzo, ha fatto nascere il dubbio, nella magistratura italiana [4], che *Deutsche Bank* avesse associato un tipico attacco speculativo a una regolare operazione di ristrutturazione del portafoglio.

I BTP, inoltre, sono un prodotto finanziario che presenta un vero e proprio primato per quanto riguarda il numero annuale di emissioni sul mercato primario, che avvengono a ogni fine mese mediante *asta marginale* e che, dato l'ammontare complessivo del debito pubblico italiano, comportano normalmente importi di notevole entità, superiori in media allo 0,1% dell'importo complessivo del debito italiano.

I prezzi sul mercato primario e su quello secondario sono strettamente interconnessi non solo mediante arbitraggio, ma anche, in forma più tecnica, perché il prezzo che si registra sull'MTS nei giorni precedenti l'asta di emissione definisce le condizioni di mercato che il MEF prende in considerazione nel fissare la soglia discrezionale di prezzo al di sotto della quale le proposte di acquisto sono considerate *non convenienti* e sono escluse dall'aggiudicazione dell'ammontare effettivamente collocato, che può discrezionalmente variare all'interno di un intervallo preannunciato dal MEF in sede del comunicato stampa che annuncia l'asta.

Da questo punto di vista, il prezzo che si determina sul mercato secondario, sulla base delle aspettative e dei poteri di mercato in esso esistenti, influenza l'effettiva onerosità del debito pubblico italiano sul mercato primario. Ma ciò che avviene nelle aste può a sua volta influenzare l'andamento del prezzo sul mercato secondario e, conseguentemente, quello dello *spread*.

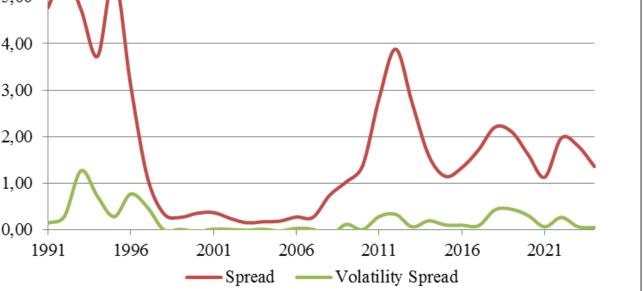
Dati gli importi in gioco in ciascuna emissione, determinati dalla dimensione del debito pubblico italiano, il MEF può infatti decidere di non assegnare l'intero importo nel corso dell'asta marginale. In tal caso si procede a un collocamento supplementare mediante un'asta secondaria, riservata agli *specialisti in Titoli di Stato*, attraverso un meccanismo di *private placement*, ovvero un collocamento mediante accordi preliminari con i grandi gruppi bancari. Ma, come visto in precedenza, questi ultimi sono di fatto, per regolamento, anche i principali *market maker* sull'MTS. Il prezzo dei BTP che riescono a determinare mediante negoziazione diretta col MEF sul mercato primario costituisce quindi la base di riferimento per le condizioni di offerta che possono realizzare sul mercato secondario.

L'interscambio medio giornaliero sull'MTS supera i 130 miliardi di euro [5], e i BTP decennali occupano il primo posto nella classifica delle compravendite quotidiane su questo mercato, proprio in quanto titoli detenuti nei portafogli degli operatori

finanziari in funzione della loro liquidità.

Spread e premio di liquidità

La percezione del grado di liquidità dei BTP può però essere ridotta dalla volatilità dei prezzi sull'MTS, perché nel momento in cui un operatore finanziario ha necessità di vendere potrebbe incorrere in un'oscillazione negativa dei prezzi che indurrebbe perdite in conto capitale. Data la volatilità dei prezzi sul mercato, quindi, può non essere conveniente liquidare il titolo in qualunque istante di tempo e ciò induce, con una probabilità proporzionale alla volatilità dei prezzi, un tempo di attesa medio di detenzione più elevato. Ma le limitazioni a poter cambiare idea rispetto alla detenzione di un titolo in portafoglio sono esattamente ciò che, sulla base della preferenza per la liquidità keynesiana e post-keynesiana, sono individuate come le principali determinanti del *premio di liquidità* (Kregel 1983; Wells 1983; Cardim de Carvalho 1995; Nagel 2016; Culham 2020).


Da questo punto di vista, lo spread potrebbe essere in parte costituito da un *premio di liquidità* per i BTP legato al differenziale di volatilità (*volatility spread*) che essi mostrano rispetto ai Bund tedeschi.

Il volatility spread è normalmente misurato sui mercati finanziari come differenza tra gli scarti quadratici medi dei rendimenti di due titoli, in quanto, dal punto di vista della profittabilità delle compravendite, è rilevante non solo la variabilità relativa ma anche il campo di variazione dei rendimenti.

La Fig.4 evidenzia i co-movimenti dello *spread* tra BTP e Bund decennali e del loro *volatility spread*, misurato come differenza tra gli scarti quadratici medi dei rendimenti dei due titoli sui rispettivi mercati secondari.

6,00 5,00 4,00 3,00

Fig. 4 – Andamento dello spread medio annuo in % e del volatility spread tra BTP e Bund decennali

Fonte: ns. elaborazioni su dati Datastream

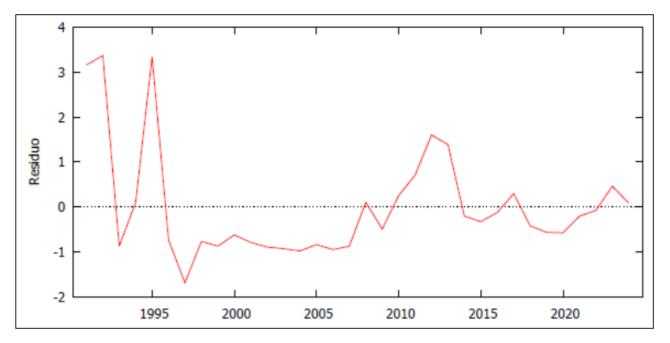
Risulta evidente che, fatta eccezione per i periodi eccezionali in cui sono entrate in gioco aspettative sul rischio inflazionistico e valutario o fattori speculativi, quali quello dell'uscita dell'Italia dallo SME o quello della crisi dei debiti sovrani, lo spread è

fortemente correlato con il differenziale tra le volatilità dei rendimenti dei due titoli, connesse a loro volta alle volatilità dei loro prezzi sul mercato secondario.

Operando una regressione del valore dello *spread* tra BTP e Bund sul loro *volatility spread* si evidenzia come quest'ultimo spieghi circa il 40% della variabilità del primo (vedi Tab. 2).

Tab. 2 - Modello 1: Regressione OLS semplice tra spread e volatility spread

osservazioni 1991-2024 (T = 34)


Variabile dipendente: Spread							
	Coefficiente	0,262767		rapporto t	p-value		
const	1,12315			4,274	0,0002	***	
VolatilitySpread	3,53703			4,579	<0,0001	***	
Media var. dipendente	1,809464		SQM var. dipendente		1,594469		
Somma quadr. residui	50,68370		E.S. della regressione		1,258517		
R-quadro	0,395881		R-quadro corretto		0,377003		
F(1, 32)	20,96972		P-value(F)		0,000067		
Log-verosimiglianza	-55,03106		Criterio di Akaike		114,0621		
Criterio di Schwarz	117	,1148	Hanna	an-Quinn		115,1032	
rho	0,30	60529	Durbi	n-Watson		1,082269	

I valori di ? e del test di Durbin-Watson evidenziano un'autocorrelazione dei residui, dovuta alla natura di serie storiche dei dati trattati. Ma i residui di entità più elevata del modello di regressione si concentrano nei periodi in cui entrano in gioco timori di inflazione e di deprezzamento valutario crescenti e imprevedibili, che determinano incrementi delle componenti dello spread relative al rischio di credito connesso a questi fattori (vedi Fig. 5). Ciò induce a ritenere che l'autocorrelazione sia prevalentemente dovuta alla presenza di variabili omesse che giocano un ruolo determinante in questi periodi. La presenza di altre determinati strutturali del fenomeno è anche avvalorata dalla significatività della costante.

Si registrano inoltre scostamenti negativi rispetto ai valori stimati nei periodi di maggiore tranquillità e stabilità finanziaria e monetaria, che potrebbero essere dovuti al fatto che in tali periodi si riduce la preferenza per la liquidità e, a parità di volatilità dei prezzi, si richiedono premi di liquidità più bassi.

Fig. 5 – Residui della regressione (Spread osservato – Spread stimato)

Operando una regressione multipla dello *spread* tra BTP e Bund sul loro *volatility spread* e sul rapporto debito/Pil italiano, si vede come quest'ultimo non aumenti in modo significativo l'R² della regressione e risulti non significativo come variabile esplicativa (vedi Tab. 3).

Tab. 3 – Regressione multipla tra spread, volatility spread e rapporto debito/Pil

Osservazioni 1991-2024 (T = 34)

	Variab	ile diper	idente: S	pread		
	Coefficiente Errore Std.		e Std.	rapporto t	p-value	
const	1,52856	1,94282		0,7868	0,4374	
VolatilitySpread	3,56801	0,797875		4,472	<0,0001	***
RapportodebitoPil	-0,00341435	0,0162075		-0,2107	0,8345	
Media var. dipendente	1,809464		SQM var. dipendente		1,594469	
Somma quadr. residui	50,61125		E.S. della regressione		1,277741	
R-quadro	0,396745		R-quadro corretto		0,357825	
F(2, 31)	10,19394		P-value(F)		0,000396	
Log-verosimiglianza	-55,00674		Criterio di Akaike		116,0135	
Criterio di Schwarz	120,5926		Hannan-Quinn		117,5751	
rho	0,361527		Durbin-Watson		1,089185	

Anche in questo caso, il ? e il valore del *test di Durbin-Watson* evidenziano un'autocorrelazione dei residui, che dipende soprattutto dalla concentrazione di quelli di entità più elevata nei periodi di tensioni inflazionistiche e valutarie.

Data però l'entità dei residui in questi periodi, non aiuta nella definizione di un migliore modello econometrico l'introduzione di una variabile dummy per i periodi di turbolenze inflazionistiche e valutarie, perché quest'ultima, nell'ambito della serie storica trattata, finisce per spiegare gran parte della variabilità della variabile dipendente, senza però fornire un ausilio nella comprensione della dinamica ordinaria del fenomeno.

Per tenere conto dell'effetto dei peridi di instabilità monetaria e valutaria, si è quindi provato a suddividere l'effetto della *dummy* in due componenti: una di carattere assoluto e una associata all'andamento del *volatitily spread*, ottenuta dal prodotto tra la *dummy* e i valori di quest'ultima variabile.

Si è quindi proceduto a specificare e stimare il seguente modello:

$$spread = \beta_0 + \beta_1 volatility spread + \beta_0 dummy crisi + \beta_0 (dummy crisi \times volatility spread) + \epsilon$$

Il modello, stimato con metodo OLS e errori standard robusti HAC, spiega il 66% della variabilità dello spread (vedi Tab. 4). I coefficienti delle tre variabili esplicative risultano tutti significativi e il valore del *test di Durbin-Watson* rientra nell'intervallo ammissibile per rifiutare l'ipotesi di autocorrelazione dei residui. Il coefficiente del prodotto della variabile *dummy* (periodi di incertezza monetaria e valutaria) e del *volatility spread* mostra un segno negativo e un valore assoluto prossimo a quello del coefficiente del *volatility spread*, mostrando come questa variabile divenga poco rilevante nello spiegare il valore dello *spread* in questi periodi, in cui prevalgono i premi per il rischio di credito.

Tab. 4 – Regressione multipla tra spread, volatility spread e variabili dummy

Osservazioni 1991-2024 (T = 34)

Variabile dipendente: Spread								
	Coefficiente			rapporto t	p-value			
const	0,649070			4,314	0,0002	排排排		
VolatilitySpread	4,47090	0,965436		4,631	<0,0001	排掉掉		
Dummyerisi	2,77489	0,585446		4,740	<0,0001	भेर मेर मेर		
DummyVolatility	-4,27695	1,22272		-3,498	0,0015	***		
Media var. dipendente	1,809464		SQM var. dipendente		1,594469			
Somma quadr. residui	25,94369		E.S. della regressione		0,929941			
R-quadro	0,690767		R-quadro corretto		0,659844			
F(3, 30)	15,14874		P-valu	ne(F)	3,48e-06			
Log-verosimiglianza	-43,64657		Criterio di Akaike		95,29313			
Criterio di Schwarz	101	,3986	Hanna	an-Quinn	9	97,37526		
rho	0,319150		Durbi	n-Watson	1,290599			

La volatilità dei prezzi e dei rendimenti può essere in parte collegata all'entità e alla frequenza delle emissioni sul mercato primario, che ovviamente dipendono dall'entità del debito pubblico che va periodicamente rinnovato. Quindi, se lo spread è influenzato dai premi di liquidità indotti dalla volatilità dei prezzi, potrebbe ancora esservi una relazione indiretta con l'entità del rapporto debito/Pil, in quanto indicatore dell'entità media di debito soggetto a rinnovo. In questo caso, però, la sua azione

dipenderebbe da un effetto di scala e non dalla sua variabilità nel periodo di osservazione e non può quindi essere colta dalla precedente regressione, che stima la correlazione tra le variabilità delle grandezze analizzate.

Questo possibile effetto del rapporto debito/Pil sullo *spread* non sarebbe comunque in ogni caso attribuibile ad aspettative relative al possibile default dello Stato sovrano e ai connessi premi di rischio richiesti dagli operatori finanziari.

Conclusioni

Se lo spread è influenzato, in tempi di stabilità monetaria, in maniera significativa dai premi di liquidità connessi alla volatilità dei prezzi dei BTP, allora il suo valore potrebbe essere in parte controllato modificando la struttura temporale delle collocazioni dei titoli del debito pubblico sul mercato primario e diversificando la composizione in prodotti finanziari del debito stesso.

L'emissione di BTP con scadenza maggiore o minore di 10 anni potrebbe ridurre l'offerta e la volatilità dei prezzi dei BTP decennali sull'MTS, dove viene misurato lo spread. Gli investitori istituzionali internazionali, tra l'altro, sembrano gradire molto, per strategie *buy and hold*, titoli di Stato con scadenza cinquantennale, che sono già regolarmente collocati dalla Germania. È ovvio che, se gli operatori finanziari diffidassero della solvibilità a lungo termine di uno Stato sovrano, titoli di questo tipo troverebbero difficoltà di collocamento. Ed è forse per questo che il MEF ancora esita a proporli. Ma ciò evidenzia ancora di più la necessità di comprendere quali siano le vere determinanti dello spread e se davvero esso sia un segno di sfiducia sulla capacità strutturale dello Stato italiano di onorare in futuro il suo debito.

La diversificazione degli strumenti di debito, in ogni caso, può riguardare non solo la loro durata temporale, ma anche il profilo dei loro destinatari e i mercati sui quali sono collocati.

Il *BTP Italia*, ad esempio, indicizzato all'inflazione italiana ed emesso per la prima volta dopo la crisi degli spread, è stato disegnato per le esigenze del mercato al dettaglio, ed è emesso direttamente sul MOT [6]. Le sue emissioni, quindi, non agiscono sulla determinazione del prezzo dei BTP ordinari sull'MTS e sul loro *spread*.

Nel 2024 si è fatto anche ampio ricorso a *emissioni dedicate* di *BTP Futura*, *BTP Italia* e *BTP Valore*, che possono essere acquistati da piccoli risparmiatori privati, senza intermediazione e senza partecipazione alle aste, durante finestre di collocamento ad hoc nel mercato primario, con intero soddisfacimento della domanda (Banca d'Italia 2025).

Queste emissioni di titoli del debito pubblico, che non influenzano la formazione del prezzo dei BTP sull'MTS, potrebbero aver contribuito a ridurre le emissioni di BTP e la volatilità dei loro prezzi sull'MTS nel corso dei primi mesi del 2025, consentendo allo spread di scendere, per la prima volta dopo decenni, al di sotto dei 100 punti base.

Riferimenti Bibliografici

Abell H. 2003. Spread Trading. Low-Risk Strategies for Profiting from Market Relationships.

Banca d'Italia 2013. Relazione annuale 2012. Banca d'Italia, Roma.

Banca d'Italia 2025. Relazione annuale 2024. Banca d'Italia, Roma.

Bianchi M. L. 2012. 'An empirical comparison of alternative credit default swap pricing models'. *Banca d'Italia, Temi di discussione (Working papers)* 882.

Brams S. 2003. Negotiation Games. Applying Game Theory to Bargaining and Arbitration. Routledge, London and New York.

Calice G. et al. 2015. 'Short-term determinants of the idiosyncratic sovereign risk premium: A regime-dependent analysis for European credit default swaps'. *Journal of Empirical Finance* 33, 174–189.

Carboni A. 2011. 'The sovereign credit default swap market: price discovery, volumes and links with banks' risk premia'. Banca d'Italia, Temi di discussione (Working papers) 821.

Cardim de Carvalho F. J. 1995. 'Post-Keynesian Developments of Liquidity Preference Theory'. In: Wells P. (ed.), *Post-Keynesian Economic Theory*, Springer, New York.

Ciocca P. 2005. The Italian Financial System Remodelled. Palgrave Macmillan, London.

Costi R. 2024. Il mercato mobiliare. G. Giappichelli Editore, Torino.

Culham J. 2020. 'Revisiting the concept of liquidity in liquidity preference'. Cambridge Journal of Economics, 44(3): 491–505.

Di Cesare A. and Guazzarotti G. 2010. 'An analysis of the determinants of credit default swap spread changes before and during the subprime financial turmoil'. *Banca d'Italia, Temi di discussione (Working papers)* 749.

Duffie D. 2010. 'Is there a case for banning short speculation in sovereign bond markets?'. *Banque de France, Financial Stability Review*, 14.

Ferrari P., Ruozi R. 2021. Economia del mercato mobiliare, Pearson Italia, Milano e Torino.

Hassan M. K. et al. 2015. 'Credit Default Swaps and Sovereign Debt Markets'. Economic Systems, 39(2), 240-252.

Ismailescu I. and Phillips B. 2015. 'Credit default swaps and the market for sovereign debt'. *Journal of Banking & Finance* 52, 43–61.

Kiesel F. et al. 2015. 'Regulation of uncovered sovereign credit default swaps – evidence from the European Union'. *The Journal of Risk Finance*, 16(4), 425–443.

Kregel J. A. 1983. 'Post-Keynesian Theory: An Overview'. The Journal of Economic Education, 14(4): 32-43.

Liu Y. & Bruce M. 2012. 'Sovereign Credit Default Swaps and the Macroeconomy'. Applied Economics Letters, 19(2), 129–132.

Nagel S. 2016. 'The Liquidity Premium of Near-Money Assets'. The Quarterly Journal of Economics, 131(4): 1927–1972.

Silva P. P. et al. 2016. 'The EU Ban on Uncovered Sovereign Credit Default Swaps: Assessing Impacts on Liquidity, Volatility, and Price Discovery'. *The Journal of Derivatives*, 23(4):74-98.

Wells P. 1983. 'A Post Keynesian View of Liquidity Preference and the Demand for Money'. *Journal of Post Keynesian Economics*, 5(4): 523–536.

[1] https://www.mtsmarkets.com/en/news/insights/market-participants-need-both-quantity-and-quality-data

[2] Soggetto che si propone sui mercati finanziari, su base continuativa, come disposto a negoziare per conto proprio acquistando e vendendo strumenti finanziari ai prezzi definiti da questo soggetto (ai sensi dell'art. 4 comma 1 (7) della Direttiva 2014/65/UE (MiFID II))

[3] Cfr. artt. 4 e 9 del Decreto Dirigenziale Specialisti - Selezione e Valutazione (novembre 2011 e modifiche dicembre 2021)

[4] Nel 2016 la Procura della Repubblica di Trani aprì un'indagine nei confronti di cinque top manager di Deutsche Bank per

manipolazione del mercato. Nel dicembre del 2017 l'inchiesta fu trasferita per competenza territoriale alla Procura di Milano, che l'ha infine archiviata perché non è riuscita a dimostrare legalmente, al di là di ogni ragionevole dubbio, il dolo volontario.

[5] https://www.mtsmarkets.com/en/news/insights/market-participants-need-both-quantity-and-quality-data

[6] https://osservatoriocpi.unicatt.it/ocpi-lezioni-di-finanza-pubblica-5-come-si-finanzia-in-pratica-il-governo